‘l} Quarterly Volume 7 (1) 1994, pp. 27 — 46

MADE: A Multimedia Application Development
Environment

I. Herman, G.J. Reynolds
cwi
P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

J. Davy
Groupe Bull
7, rue Ampére, Massy 91343, France

MADE is the acronym for an ESPRIT Ill project aimed at developing a pro-
gramming environment for multimedia applications. The resulting software
library is based on C++ and will operate on both UNIX workstations and
PC—based platforms. This paper gives a technical overview of the project and
describes a number of application scenarios where the MADE environment
will provide significant help for multimedia programming.

1. INTRODUCTION

The emergence of multimedia is one of the most significant developments in
computing technology in recent years. Glossy multimedia applications are fre-
quently demonstrated, often on a range of platforms. The major workstation
hardware vendors feel the need to come to technical fairs with impressive dis-
plays that mix graphics, video, imaging, and sound. Technology analysts pre-
dict that multimedia related hardware development will be one of the most
important boom areas of electronics in the years to come.

However, the majority of available multimedia environments aim at hyper-
media authoring, i.e., they offer the means to interactively create hypermedia
documents. We use the term “document” as a multimedia term, hence, im-
plying more than our traditional paper—based understanding. It should be
perceived as a potentially complex composition of related media information,
thus it is a multimedia document, which can be “read” or viewed in a non-
sequential fashion by following semantic connections (or links) between the
various media components, hence it is hypermedia.

27

Although the concept of a hypermedia document is a powerful one, it does not
cover all applications of multimedia. The ability to combine, modify, or even
synthesise multimedia data is often necessary for more complex multimedia
applications. For example, a user might wish to extract a frame from a video
sequence, modify it with standard image processing tools, combine the image
with some synthetic graphics, and then exchange the original frame with the
modified image. The description of such actions does not fit easily within the
model of a hypermedia document, in spite of the sophisticated interaction tools
which are often provided as part of authoring environments. We conclude,
therefore, that there is a clear need for a programming environment which
allows for and actively supports the development of such applications.

Techniques for combining media are extremely disparate and use results from
various fields of computing technology, such as, high quality synthetic graph-
ics, image processing, speech synthesis, etc. Some of these techniques are also
highly application dependent. Consequently, it is almost impossible to define
a closed programming environment which encompasses all techniques and de-
pendencies. The “traditional” answer to this kind of challenge is to use object—
oriented techniques: services are offered in the form of objects, which can be
extended by the programmer to include any necessary application—dependent
tools.

The European Communities’ ESPRIT III project MADE (Multimedia Appli-
cation Development Environment[1]) has the ambitious goal of defining and
implementing a portable object—oriented development environment for multi-
media applications. The outcome of the MADE project will be a programming
environment, based on C++, running on various UNIX platforms, as well as on
MS-WINDOWS environments. This paper gives a technical overview of MADE:
it describes its major services and a number of “application scenarios” which
make significant use of these services. It is not the purpose of the paper to
give a detailed description of the complete project; that would go far beyond
the paper’s scope. The interested reader should consult the “official” MADE
documents to gain a more detailed insight [1, 2, 3, 4, 5, 6].

It should be emphasized that MADE is primarily a development project,
with some research elements in it. This paper gives an overview of the project
as whole, whereas the more research-like results (e.g., object model, interaction,
etc.,) are presented elsewhere [7, 8]. Note also that the MADE project is still
an ongoing activity. Consequently, some problems are still open and will be
solved later in the project. Consequently, this paper sometimes raises issues
without presenting complete solutions.

2. GENERAL OVERVIEW

The full MADE environment contains a large number of different objects and
related services. The majority of these fall into two important categories,
namely: toolkits and utilities. (Note that the object—oriented nature of MADE
makes it possible for an end—user to add new objects to both toolkits and util-
ities and to extend the functional capability of existing ones.)

28

)

User Interface Tools
Scripting Languages (Python, Tcl,

Database

< Interchange/Communication (MIFF,KEDIT,OLE, ...) >

FI1GURE 1. Toolkits and Utilities

The toolkit category (or level) represents a collection of objects that are
considered to be fundamental to multimedia programming. It includes objects
that interface with different media. It also includes objects which, although
not directly involved in handling specific media, play a fundamental role in
constructing more complex multimedia applications. Some details of the tool-
kit level will be given below (see Section 3).

Although it is possible to construct complex applications using the MADE
toolkit level only, doing so may be unnecessarily tedious and error—prone. Con-
sequently, the utilities level has been defined on top of the MADE toolkit. This
level includes objects which implement more complex functionality and which
are considered to be essential for most multimedia applications. Application
programmers may choose to use some of these utility objects; however, the tool-
kit level is never completely obscured, and an application is free to make direct
use of toolkit objects if necessary (see Figure 1; some of the terms appearing
on the Figure will be described in later sections).

A common object model was defined and developed at an early stage of
the MADE project to ensure the smooth cooperation between objects in the
MADE library and to provide a clear conceptual approach to some of the
technical issues raised by multimedia programming in general. This object
model defines a conceptual layer on the top of the implementation language

29

of MADE (i.e., C++), and it describes numerous features of objects within
MADE. As far as the application programmer is concerned, two characteristics
of this model are of a great importance: the use of active objects and the
presence of delegation.

In MADE, objects may be active, that is, they can have their own thread of
control (within the shared address space of the same UNIX or MS-WINDOWS
process). This capability is exploited by the implementation of the MADE
toolkit, and is a major tool used in defining synchronisation among media
(see §3.2.3 below). Application programmers have to be aware of this situation
if they decide to use the toolkit level objects directly.

The concept of delegation in the MADE object model applies to an object’s
methods. Using delegation, an object may delegate some or all of its behaviour
(i.e., the messages it serves) to any number of other objects, which then act
on its behalf. The notion is not unlike inheritance, but delegation is dynamic,
i.e., the target of delegation may be set/re—set at run—time. Delegation plays
an important role in establishing constraints in MADE (constraint objects are
part of the toolkit), and offers an advanced means of temporal behavioural
control. A more exact semantics of delegation is described in [9]; see also [7]
for a fuller description of the concept within the framework of the MADE
object model.

The object model is realised in the form of an extension of C++, called
mC++. The mC++ translator generates a set of C++ classes, as well as library
and macro calls; this “intermediate” level can also be accessed by programmers
directly if they do not wish to use yet another programming language. Details
of the object model are normally hidden to most application programmers and
are only of real interest to toolkit and utility developers. The full technical de-
scription of this object model is omitted here; refer to [7] for a general overview
and to [2] for a complete description of the model and mC++.

The object model is not the only means to achieve smooth cooperation among
objects. All MADE objects also include general features that allow them to
be used under various circumstances in a unified way. Some examples of these
features are given below.

All objects in the MADE system can be persistent. This means that they
may “store” themselves in a database and can restore their content at a later
stage of the application’s lifetime or even during the execution of some other
application. This feature is present for all MADE objects by default; the only
step the application program has to do is to invoke certain implicitly defined
member functions. Furthermore, the MADE toolkit level includes a special
object which acts as an interface to various database systems. Although this
interface does not cover all known database systems, it does provide an interface
to some object—oriented and relational databases. Here again, the general
features required by the database access are included in all MADE objects
in a database—independent way, and the specific method of database access is
hidden by the general database management object (see [10]). Interfacing to
a new database system is achieved by specialisation of the general database

30

class.

MADE objects, primarily utility objects, are also prepared for distributed
access. This not only means that the MADE library includes specific objects
for inter—process communication, but also that MADE objects are prepared
to “convert themselves” into a format suitable for communication and, con-
versely, can “reconstruct” their internal state based on data coming from a
communication channel. A sophisticated object—oriented communication pro-
tocol (called KEDIT[11]) is currently under development for UNIX platforms,
which will allow MADE applications to offer object—based services, and will
provide means for the transfer of MADE objects from one MADE application
to another. The features offered by the combination of MADE objects and
KEDIT are similar to the kind of object services defined by the Object Man-
agement Group'. On MS-WINDOWS platforms the OLE protocol will be used
to provide similar facilities; this is already an integral part of these environ-
ments.

All MADE objects include a general mechanism known as a “dynamic call in-
terface”. This interface makes it possible to call an object’s member functions,
knowing the object’s handle and a string description of a member function’s
signature. This string can be constructed at run—time, hence the “dynamic”
nature of the call. This feature permits MADE objects to be accessed easily
from scripting languages, and provides a simple way of constructing interfaces
to other programming languages.

3. TOOLKIT OBJECTS

The primary goal of the MADE toolkit is the provision of a basic set of features
and facilities for multimedia programming. This includes control over different
media, as well as other types of objects that have been identified as fulfilling a
fundamental role.

3.1. Media objects
The MADE toolkit includes media objects: objects whose function is to directly
control different media in a unified, hardware/firmware independent way.

The toolkit includes four main categories of media objects: graphics objects
(for two and three dimensional graphics), animation, audio and video objects.
All of these objects “hide” their respective device-dependencies behind specific
low—level abstract interface objects, thereby cleanly separating their MADE
specific behaviour from particular device dependent features. Adaptation of
a media object type to a new environment simply requires the definition of
a new device—dependent subclass of the appropriate general interface object.
The abstractions for the various media objects have been developed within

LOMG is an industrial consortium aiming at the definition of object services in general. In
their CORBA specification[12], OMG gives a specification for object services in a distributed
environment. However, CORBA is still not final, nor is there a reliable implementation
available yet. If, by the end of the MADE project, OMG produces a final version of their
specification, replacing KEDIT with this specification will be considered.

31

the project; however, existing technology practice has greatly influenced our
design.

Some of the categories listed above contain relatively simple objects. Their
task is to provide a mapping from the MADE library structure onto their re-
spective interface object. This is the case, for example, with video and audio
objects. The most critical aspect of the definition of these objects is synchroni-
sation. The objects and their device specific interfaces must be matched with
the synchronisation model of MADE (see §3.2.3 below) and with the require-
ments and facilities provided be the specific hardware that is used.

Audio and video objects rely on Microsoft’s Multimedia Environment for
MS-WINDOWS, which is a de—facto standard in this area. On UNIX, portable
video and audio services are used: the Video Extension of the X Windows
system for video ([13]) and the AudioFile server for audio ([14]).

2D and 3D graphics requires a greater degree of complexity. Indeed, the
collections of both the 2D and the 3D graphics objects represent two full-blown
subsystems per se, which are also usable stand—alone for graphics purposes.

For 2D graphics, the MADE toolkit reuses an existing object—oriented 2D
graphics system, called GoPATH][15], by adapting it to the requirements of
MADE. These 2D objects include various shapes, associated clipping areas,
composition rules, attributes, etc. The programmer has the possibility, via
sub—classing, to define new shapes and include these into the full 2D world.
GoPATH is currently based on X11R5 for UNIX platforms, and on MS-WINDOWS.

The 3D subsystem provided by MADE supports a mapping between general
3D objects (shapes, surfaces, lighting and view control, etc.) and existing 3D
packages. A mapping to SGI’s GL library is currently being developed. The
use of PEX or Open-GL, as a replacement for GL, will be considered in the
future. It has to be stressed that it is not the goal of the project to define
yet another 3D graphics package; the emphasis is more to provide an object—
oriented layer on top of existing packages which is fully integrated into the
MADE environment. On the other hand, due to the object—oriented nature
of the MADE toolkit, it is possible to extend, by sub—classing, the basic 3D
functionality (e.g., to add a proprietary ray—tracing module) if necessary.

Graphics objects (both in 2D and 3D) do not have a temporal dimension;
essentially, they describe static scenes. This is in contrast with the inherently
temporal nature of audio and video objects. To alleviate this contradiction,
MADE includes separate animation objects, which describe, and even auto-
matically generate, sequences of scenes. The methods and algorithms used in
animation may be extremely complex and, more importantly, are dependent on
specific application areas. It is not the purpose of the MADE animation objects
to encompass all available animation techniques. Although simpler, built—in,
animation techniques based on animation curves are available, MADE anima-
tion objects support animations defined as scripts, using a scripting language,
which are then interpreted by the animation objects. Animation objects are
active objects, and are thereby subject to the same synchronisation behaviour
and control as audio and video objects (see §3.2.3).

32

Thisisacube

« [(O

402000

FIGURE 2. A rudimentary example for multiple media in an application.

3.2. Combination objects
The MADE toolkit level object represent a relatively low functionality level. It
is of course clearly possible to build impressive applications that rely solely on
MADE media objects, using complex static and animated graphics, running
a video on the screen and playing audio, etc. However, an additional level of
functionality is necessary when more complicated application programs have
to be devised and implemented. The very rudimentary example on Figure 2
already demonstrates that: interactive behaviour assigned to graphics objects
has to be combined to control video output; visual representations for audio
control have to be defined and implemented; 2D and 3D objects have to be
combined in one picture, etc.

Basic media objects become really usable if they can be combined easily in
a variety of ways. The combination of media objects (and MADE objects in
general) within an application has received particular emphasis in the speci-
fication of the project in order to enhance the usability of the MADE tools.
Five major areas of combination have been identified: tmaging, structuring,
synchronisation, interaction, and constraint management. Each of these will
be looked at in the following sections.

3.2.1. Imaging

Video objects, 2D and 3D graphics objects, and imported image files, may all
be visualised on the display screen. Very often, an application may require such
“images” to be combined in some way. For example, a complex picture might
be created by combining a snapshot of a video sequence, some annotated 2D
text, and an imported image used to selectively filter the result.

33

MADE supports this kind of combination via an image object. All MADE
media objects that produce displayable output can be directed to produce
image objects. These can of course be presented, but they can also be converted
into video frames or stored in a particular file format.

3.2.2. Structuring

The importance of structuring, i.e., of creating aggregates of different objects in
interactive programs, has long been recognised in computer graphics. The ma-
jority of graphics packages provide some form of aggregation, such as structures
in PHIGS, the scene database of IRIS Inventor, or the Go trees in GoPATH[15].
Although the structures used in these examples are relatively simple (directed
acyclic graphs or trees), the appearance of hypertext and hypermedia systems
makes it clear that more general aggregation facilities are necessary.

The MADE toolkit answers this requirement by including a general graph
management facility. Graph objects are provided to support the specification,
management, and traversal of general graphs, with no restrictions imposed on
their types. (Nodes of these graphs may refer to any MADE object).

Graph objects provide a sound basis for the structuring required by graphics
as well as for complex hypermedia navigation systems. They are fully integrated
into the MADE environment, which has a number of advantages. For example,
graphs provide an automatic protection against uncontrolled concurrent access
of structures by active objects, they can be exported and imported using the
same persistency mechanism as is defined for all other MADE objects (i.e.,
complete graph structures can be stored in databases), etc. It is then the role
of application programs and/or higher level MADE components (like the the
so-called Composition Utilities, see §4.3 below) to model the notions of links
and anchors, using interaction and the graph objects.

3.2.3. Synchronisation
Synchronisation has always been one of the central problems of multimedia
applications and the MADE toolkit offers a consistent solution to this issue.

The fundamental synchronisation scheme used in MADE is called reference
point synchronisation. For each so—called, synchronisable object, a series of me-
dia specific reference points can be defined (for example, video frames, audio
samples, etc.). Each reference point contains internal “instructions” for syn-
chronisation and references to other synchronisable objects with which they are
to be synchronised. Synchronisable objects are active objects: when they reach
a reference point, synchronisation is performed by exchanging messages with
other active objects, waiting for their replies, etc. The reference point model
has been inspired by [16]; its details in the MADE environment are specified
in [3].

Audio, video, and animation objects are obvious examples of synchronisable
objects?. A MADE programmer may also create new, application-specific,

2To be very precise, certain animation objects, which describe random animation, cannot
be properly synchronised, but these objects represent a small minority vis-a-vis animation

34

synchronisable objects.

The MADE toolkit also includes a higher—level mechanism for time—based
synchronisation, based ultimately on the reference point model. This mecha-
nism defines different types of schedulers that an application may use as build-
ing blocks for more complex time—based synchronisation scenarios (see [3] for
further details). These schedulers all assume the existence of a special syn-
chronisable object within MADE, namely a timer. The approach of building
time—based synchronisation on the top of a more general mechanism (instead
of considering it as a basic feature) allows the MADE library to be used in
environments which do not offer real-time facilities.

3.2.4. Interaction objects
Multimedia applications are very often highly interactive; it is therefore essen-
tial to have tools to support the construction of complex interaction scenarios.

The MADE project does not aim at developing a completely new user inter-
face management system. Instead, MADE objects may be embedded into an
existing user interface environment, like the Athena Widget set of X Window
System, the Motif toolkit, MS-Windows. Nevertheless, not all user interaction
can be adequately managed by these tools; many complex interaction scenar-
ios will involve MADE objects directly (e.g., for direct manipulation). The
scheme developed in MADE for achieving these complex interaction scenarios
is based on the notion of sensors and associated interaction objects.

Sensors are best understood in the context of graphics: in this context they
define sensitive areas on the screen, which can be “activated” by external in-
teraction, typically mouse events. Sensors are associated with MADE objects
via interaction objects. In effect, they provide a sensitive region which acts
as a focal point for interaction with these objects. For some objects, sensors
cannot be attached to the object itself, but must instead be attached to a vi-
sual representation of the object in the form of graphics object. This might be
the case for sensors attached to audio objects. The notion of sensor is general
enough to accommodate regions involving higher dimensions, including time.
It can also be applied in association with interaction input devices that provide
non—geometric input measures, such as audio input devices, pressure sensitive
devices, etc.

Sensors forward events to interaction objects; it is part of the sensor’s ini-
tialisation procedure to decide which interaction object it is connected to. The
interaction objects react to these events by following a pattern of behaviour
that is defined as part of the interaction object. Several sensors may be con-
nected to the same interaction object.

In very simple cases, interaction objects perform straightforward and prede-
fined tasks (for example, reshaping a graphics object). In other cases, much
greater complexity may be required, perhaps providing control over several
MADE objects and receiving events from several sensors (e.g., the video con-
trol board depicted in Figure 2 reacts on the sensors of the graphical objects

objects in general.

35

describing the four push—buttons, may control the visual appearance of these
buttons and, of course, controls the video object proper or perhaps a combi-
nation of objects; see also Figure 3). To describe such complex interaction
behaviour, MADE introduces a type of interaction object that implements
a general finite state machine (see [8]). These objects have a default finite
state machine for a specific interaction scenario; however, the user can also as-
sign a script to an interaction object, which, conceptually, includes a complete
scripting interpreter (see also §4.1.2). The assignment of a script automatically
overrides the default behaviour of the interaction object. This high degree of
openness, with respect to the end—user, is a very valuable feature of the MADE
interaction management.

3.2.5. Constraint management

Provision of a general purpose constraint system within MADE would jus-
tify a development project in its own right. Fortunately, there are restricted
types of constraint satisfiers that, while not being universal, still provide useful
functionality for dealing with important categories of constraints.

The approach followed in the specification of constraints is to consider those
applications of constraint systems that are of direct relevance to the multimedia
part of MADE [6]. In effect, this restricts the scope of the constraint satisfier
to the topics of geometric layout, user interface control, animation, and media
synchronisation. For example, the MADE presentation facilities include a
composition editor /player which can make use of constraints when defining the
hypermedia document structure and presentation characteristics.

For the time being, only one—way constraints are proposed for MADE. While
multi-way constraints provide greater expressive power to the constraint user,
they also require more complex constraint satisfaction algorithms and may
involve more effort on the part of the programmer to set up specific constraint
objects.

4. UTILITIES
Utilities offer developers a higher level of functionality that simplifies the im-
plementation of both basic and more complex multimedia applications. In fact,
the functionality of some of the utilities is such that, by “wrapping” them into
a simple program, they can be used as a separate applications in their own
right.

There are four main utility categories:

1. application program interface utilities: user interface metaphors, script-
ing, user interface builders, user monitoring;

2. monomedia editors: 2D and 3D graphics editors, animation, video, and
audio editors;

3. composition utilities: framework for hyperdocument management, syn-
chronisation editors, interaction and graph object editors;

4. miscellaneous: class browsers, generic on—line help facilities, object mon-
itoring.

36

Video

Interaction Object

---> Events

- -= Messages (control)

FIGURE 3. Use of Interaction Objects.

The different MADE utilities may rely on one another. For example, the user
interface metaphors (§4.1.1) are reused by monomedia editors (§4.2) and the
composition utilities (§4.3).

Utilities, together with MADE toolkit objects, offer a set of building blocks
which can be used in various ways to create different types of MADE applica-
tion program architectures. Some of these architectures will be described in §5
below.

4.1. Application program interface utilities

Application program interface utilities consist of a set of tools that help an
application programmer to prototype and develop a final MADE application.
Although the facilities provided by some of these utilities are not new, it is
necessary to provide them in the context of the MADE environment. Note
that only the more important tools are presented in this paper.

4.1.1. User interface metaphors

The visual representation and control of media objects is not always obvious.
Indeed, to control certain attributes of media objects, relatively complex visual
tools with associated interaction behaviour have to be developed. These tools
can be used on different levels: in program development, in authoring, or in
the final playback of authored documents. These user interface metaphors play
an essential role in defining complex interactions operating on the objects. It
may sometimes be much easier to attach a sensor to these metaphor objects,
rather than to try to define a sensor on the object proper (see §3.2.4).

37

There are numerous examples for such user interface metaphors, including:

e Video control board for stopping, playing, rewinding, providing fast for-
ward and backward motion, etc.

e Audio panel containing volume control, channel control, etc.

¢ Control boards for the manipulation of graphics object attributes (colour,
lighting, shading attributes, etc.)

All these objects, collectively called user interface metaphor objects, are part
of the MADE utility library. Other utilities (primarily the editors, see §4.2),
reuse these objects, thereby providing a common look—and—feel among MADE
utilities. (MADE applications may choose to ignore these objects and to im-
plement similar user interface facilities by themselves.)

4.1.2. Connection to scripting languages

Several MADE objects make use of scripting languages: animation and inter-
action objects have been mentioned in the preceding sections, and there are
others, too. It is also perfectly feasible to create full-blown applications, either
in a prototype or in final form, where the “user—level” program is a script.

MADE does not introduce its own scripting language. Instead, all objects
that make potential use of scripting access the interpreter functionality via
an abstract general scripting interface. This general scripting interface is then
specialised to access specific languages and their interpreters. This lets the final
choice over which scripting language is used be made by the MADE application
developer or even the end—user. Furthermore, several scripting languages can
coexist within the same MADE application (see [5]).

In order to be usable for MADE, a scripting language should have an em-
beddable interpreter. That is, it should be possible to link the interpreter to
C/C++ and C/C++ functions should be accessible from the language some-
how. Conversely, functions of the scripting language should be accessible from
C/C++. Note that the availability of the dynamic call interface of MADE ob-
jects plays an essential role in interfacing such interpreters: it is not necessary
to create a special “stub” for each MADE object in the scripting language;
indeed, MADE objects can be created, and their methods invoked, based only
on their signature.

There are several general embeddable interpreters available. Currently, the
MADE toolkit includes an interface to Tcl ([17]), and to Python, a language
developed at CWT ([18]).

4.1.8. User interface builder

The MADE utilities workpackage includes a prototype authoring toolset that
incorporates a user interface builder for use on UNIX platforms. This based on
an existing tool that combines Tcl and Motif, extended to included specific user
interface entities for multimedia applications. A similar development (being
carried out independently of the MADE project) for Python may be used in
later stages of the project.

38

On MS-WINDOWS environments, Visual C++ will be used as a user interface
builder. For the integration of MADE objects and utilities, subclasses of the
“Microsoft Foundation Classes” will be developed and accessed directly from

Visual C++. This has already been validated for the 2D editor of GoPATH][15].

4.2. Monomedia editors

The role of monomedia editors is relatively straightforward: they offer the
means to create, modify, and display media objects. There is nothing par-
ticularly unusual or new in these utilities, except that they all abide to the
architectural demands for MADE editors, as described above and they in-
corporate the notion of configurability. Each monomedia editor is able to be
configured at start up in one of a few modes of operation. For example, its
possible to configure an editor for use as a player-only tool. This mechanism
is used extensively by the composition utilities (see §4.3). Note that MADE
editors make use of the visual metaphors described in §4.1.1 to give a unified
outlook.

MADE editor objects may be used in various application settings. This in-
cludes being activated alongside with other MADE objects, e.g., other editors.
In this case, editor objects may be active objects; the mechanism provided by
the MADE object model will ensure that data managed by several editors will
not be corrupted by concurrent access. Editors may also be wrapped up into
separate application programs to run as stand—alone processes. Here, editors
may operate on MADE objects residing in a database or they can manage
objects received via a communication channel using, e.g., the KEDIT protocol
(52).

The 2D graphics editor is based on an existing program, called godraw (re-
lated to GoPATH, mentioned earlier). The facilities supported by this editor
are relatively straightforward, and are in line with other 2D graphics editors,
available for different platforms.

The 3D graphics editor emphasises two aspects of 3D editing: editing of
scenes by composing 3D objects in space, and simple 3D solid modelling to
create 3D bodies. It includes dialogues to control attributes like texture, colour,
reflectance, opacity, etc.

The audio editor offers facilities to “cut” and “paste” audio tracks, apply
(possibly user—specified) filters on the sound tracks, and modify their charac-
teristics. A MIDI editor will also be available.

The video editor offers similar facilities to that of the audio editor: “cut” and
“paste” of video sequences, modification of its characteristics (if the underlying
hardware permits it), retrieve and replace frames as images, etc.

A separate antmation editor is also provided, which allows for the interactive
creation and editing of animation curves, and animation scripts.

Note that, under MS-WINDOWS, Microsoft’s Multimedia Environment al-
ready contains some multimedia editors; to avoid duplication, these editors will
be reused as much as possible.

39

4.8. Composition utilities

Composition editing and playback is the mechanism within MADE for devel-
oping and viewing multimedia/hypermedia documents, both from the point of
view of an author of such documents and also from the point of view of the
final user(s) of a MADE application based on the document concept. The
composition editing and playback utility is one of the main integrating compo-
nents of the MADE application environment. It is through the definition of an
abstract document structure that a hypermedia document is created and it is
the presentation of this hyperdocument which the end user may interact with.
During both the authoring and playback modes of operation the composition
utility makes direct use of the other MADE utilities for viewing or editing
particular media objects, for presenting help information, for navigating the
hyperdocument structure, and perhaps also for monitoring the user’s actions.
The composition utility drives the operation of these other utilities based on a
composition graph (i.e., the internal representation of the hyperdocument).

An essential aspect of the composition facilities is the ability to define and
manipulate an abstract document structure®. The abstract document structure
is a representation of logical components which describes not only the specific
types of media involved in the presentation, but also the semantic connections
between media, the synchronisation constraints associated with the presenta-
tion of the logical components, geometric and other presentation attributes for
each component, and specific interaction entities to be used in reading and
interacting with the multimedia document.

The authoring and presentation of a hyperdocument is not only determined
by the media and the composition utilities. There may be a number of alterna-
tive styles (or metaphors) for presenting a particular hyperdocument that are
dependent not on the specific document itself but on the application domain
in which the MADE application exists.

A specific goal of the composition utilities of MADE as a whole is to separate
the presentation metaphor used for authoring and viewing a MADE hyperdoc-
ument from the underlying composition graph. The aim is to accommodate
different styles of authoring and different forms of visually structuring the hy-
permedia information. Within the MADE project, a prototype authoring tool
is being developed with a specific presentation metaphor. It will, however, be
possible for another authoring tool to choose a radically different presentation
scheme and implement it on the “top” of the MADE composition utilities.

The composition utilities also make provision for using an interchange format
to represent the abstract document structure in a more persistent form. An
interchange format enables the reuse of existing compositions, either fully or
in part, and enables the exchange of documents among MADE applications.
There are a number of contenders at the moment, HYTIME[19] and MHEG[20]
are standardised formats, and there are a other proprietary ones. A third choice
would be to develop a MADE specific format (temporarily denoted as MIFF),

3This abstract document structure is also referred to in this specification as a composition
graph.

40

perhaps based partly on either of the above or some other industry format. At
the time of writing, Apple’s BENTO[21] format has provisionally been chosen
for use as the MADE interchange format (MIFF).

The composition utilities include some sub—modules with well specified tasks.
These include facilities for interaction, synchronisation, layout and composi-
tion.

An interaction editor creates or modifies interaction objects (see §3.2.4).
This involves defining sensors associated with MADE objects (or with their
associated visual metaphor), specifying the objects the interaction object has
to control, and editing the corresponding script. The definition and/or the
modification of sensors may involve, e.g., graphics editing, which means that
the interaction editor may also start up a 2D graphics editor internally. In
this setting, interaction objects could provide an internal representation for
hyperlinks.

The role of the synchronisation editor is to interactively define the synchro-
nisation patterns among several synchronisable MADE objects. This may in-
volve the specification of reference points, setting references of other object the
synchronisable object has to synchronise with, defining the details of this syn-
chronisation, etc. Time objects are also managed by this editor; the user may
indeed prefer to use the notions of time, scheduler, and time—constraints for the
purpose of synchronisation, rather than the concept of reference points. (As
described in §3.2.3, both mechanisms are available within the MADE toolkit.)

Inside the synchronisation editor, the choice of the interchange format will
greatly influence whether the emphasis will be placed on reference point or
time—based synchronisation. HyTime, for example, expresses all synchronisa-
tions using an abstract notion of time; quite naturally, if the HyTime format,
or a subset of it, is chosen, this will determine the final shape of the synchro-
nisation editor, too.

The graph or layout editor gives a visual interface for the direct manipulation
and visualisation of the composition graph (i.e., the hyperdocument structure).

Finally, the composition editor is the most complex composition utility, which
combines and controls all other composition utilities as well as the monomedia
editors, and MADE toolkit objects. It is this module which lies at the heart of
all composition utilities, and which is responsible for providing all the general
functionalities described above.

5. APPLICATION ARCHITECTURES

The notion of multimedia application is a very broad concept and applica-
tion programmers may make use of a package like MADE in different ways.
Also, the concept of a user of MADE (or of similar packages) has become a
somewhat fuzzy notion; there are, in fact, different types of users (toolkit or
utility developers, C++, script programmers, hypermedia document authors,
etc) which are all, in some way or other, “users” of the MADE environment.
Without claiming to be exhaustive, this section will give some, typical examples
of application program architectures.

41

Note that the full MADE ESPRIT project includes the development of some
pilot applications. It is not the purpose of this paper to give a thorough descrip-
tion of the whole ESPRIT project, hence these applications are not described
here. Suffice it to say, however, that the application program architectures, as
presented below, are all represented in these various pilot applications.

5.1. “Traditional” programming

The MADE toolkit objects, plus some of the utility objects, form a powerful,
albeit “traditional” programming environment for C++ programmers. This
means that applications may be developed in C++ or C, and then linked to a
set of run—time MADE libraries.

Figure 1 gives a faithful picture of a traditional program using MADE. The
application program (which is usually a single UNIX, or MS-DOS task) uses
different toolkit objects, either directly or indirectly, via some utility objects.
A more elaborate application would also make use of an external database,
accessed via the MADE database object facilities.

The application program may interchange data with other applications via,
e.g., the MIFF exchange format. Alternatively, the application program may
offer services, in the form of a sophisticated multimedia server, using either the
KEDIT protocol or OLE. Other applications may then either directly manipu-
late MADE objects via this protocol or full MADE objects may be transferred
back and forth and be manipulated by different modules.

Various objects, such as the interaction and animation objects, can use script-
ing languages, which may be revisable by the end—user. In fact, the skeleton
of the application program may also be written in a scripting language instead
of C or C++; the script would then manipulate MADE objects (written in
mC++) via the appropriate MADE-script interpreter interface.

Another possibility is to use C++ and, e.g., Motif to create the user—interface;
this is when a graphics user interface application builder may play an important
role.

5.2. Hyperdocument editing and playback

Figure 4 illustrates the possibility of hypermedia document manipulation us-
ing the full-blown composition utilities described in §4.3. The programming
environment offered by MADE in this setting is hypermedia document au-
thoring; quite naturally, the user community for such an environment differs
radically from the community of “traditional” programmers. (Very often, to
make the distinction, members of this community are referred to as “authors”,
as opposed to “users”.)

In this authoring environment, the composition utilities are conceptually sep-
arate from the media editors. The composition utilities act as the coordinating
central hub of the complete architecture. Effectively, there is an inter—editor
message facility that is used to both control the operation of the media edi-
tors and to provide information to the composition utilities representing actions
performed by the user through dialogues with the media editors. In this setting

42

Presentation interface

composition utilities

Synchro-
Layout nisation Composition Interaction
editor editor editor editor

[
<}:;> Database Composition Graph
| Object

monomedia editors

)) 2D 3D L
[Audio] [Video] [Graphics] [Graphics] [Ammatlon]

FIGURE 4. Composition Utilities in a MADE Application

the media editors may be considered as separate applications or, in other terms,
as separate service providers. These applications may be realised following the
scheme described in the previous section.

This organisation implies that media objects or references to objects are
passed between the composition utility and the media editors in order to “ren-
der” them. Similarly, edited media objects may need to be passed back to the
composition editor and placed into the multimedia database.

Note that a simpler version of the architecture, including a simpler version
for each of the media editors, may be configured to be used for “playback”
only.

5.8. Other application schemes

The application architectures presented in the preceding two sections represent,
in a way, the two extremes of a large palette. Intermediate architectures,
making use of only part of the full MADE functionality are also possible and
feasible. It is possible to create, for example, a HyTime-like engine based on
the MADE toolkit and some of the utilities only (although these utilities may
be distributed services rather then linked to the HyTime engine)?; interactive
modelling applications, or scientific visualisation applications, are also possible,
which may use the services of media editors, just as a full hypermedia authoring

4In fact, creation of an engine for a specialised set of HyTime documents is one of the
pilot applications that is part of the full ESPRIT project.

43

HyperPATH interface

HyperPATH

< M2000 Protocol >

monomedia editors

I

:

I

: Audio Video 2 3D Animation
l Graphics Graphics

I

I

I

FIGURE 5. Use of an External Composition Tool: HyperPATH

tool does, but with a fundamentally different user—interface.

The application architecture shown on Figure 5 illustrates another possibil-
ity for an authoring environment. As said earlier, media editors, realised as
MADE applications, may be used as independent servers, provided that the
external communication protocol is understood by the “wrapper” around the
MADE editor objects. In such a case, an “external” (i.e., not closely MADE
dependent) hyperdocument authoring tool may be used instead of the MADE
composition utilities. The example used in Figure 5 is HyperPATH, formerly
known as Multicard ([22]), a hypermedia editing tool developed by Bull. (The
M2000 protocol referred to in the figure is the internal communication protocol

defined for HyperPATH.)

6. STANDARDISATION
In a somewhat unexpected way, activities in the MADE project have become
very much relevant recently for an ongoing standardisation process within ISO.
Indeed, after several years of preparations, the ISO/IEC committee JTC 1/SC 24
(the committee which developed graphics standards in the past) has engaged
into a project for the standardisation of a presentation environment for mul-
timedia programming. The scope and purposes of this new project, called
PREMOI|23] are indeed very close to the project specifications of MADE:
an object—oriented presentation environment for multimedia objects, including
graphics, video, audio, etc., which incorporates specific means for the synchro-
nisation, interaction, and combination of such media.

Fortunately for the MADE project (and, hopefully, for the PREMO project,
t00), contacts between MADE project members and the relevant ISO commit-
tee could be set up very quickly, due to some earlier ISO activities of several

44

participants of the MADE project. Concepts developed within the MADE
project have been included into the PREMO activities, and, conversely, some
of the issues that have arisen at the PREMO meetings have provided valuable
input in the design work of MADE. It can be expected that this fruitful in-
teraction will help to shape the outcome of the MADE project in the future,
too.

ACKNOWLEDGEMENTS

Obviously, MADE is a large—scale teamwork project, involving experts from
a number of industrial and academic institutions®. Although only some of
the partners are involved in the specification details of the MADE framework
(others being responsible for the pilot applications), the team of experts is still
rather voluminous. Instead of trying to list everybody and thereby incurring
the danger of forgetting and therefore offending somebody, we prefer to omit
such a long list. We would just like to express our gratitude to the full MADE

team altogether.

REFERENCES

1. J. Davy (ed.) (1992). Paris, MADE 1, ESPRIT III Project 6307, Technical
Annez.

2. F. ArBaB, P. TEN HAGEN, M. HaiNnDL, F. HEEMAN, I. HERMAN,
G. REYNOLDS and A. SIEBES (1993). Specification of the MADE object
model, Tech. Rep. T/OM S1, Version 0.5, Esprit Project 6307 (MADE).

3. N. GUIMARAES and N. CORREIA (1993). Specification of the MADE time
objects, Tech. Rep. T/TO S0, Esprit Project 6307 (MADE).

4. M. HAINDL, I. HERMAN and G. REYNOLDS (1993). Presentation scheme —
preliminary specification, Tech. Rep. T/PRS S0, Version 0.1, Esprit Project
6307 (MADE).

5. I. HERMAN, F. HEEMAN and F. LEYGUES (1993). Interfacing scripting
languages, Tech. Rep. Version 1.3, Esprit Project 6307 (MADE).

6. J. vAN HINTUM and G. REYNOLDS (1993). Constraint objects, Tech. Rep.
T/COO S0, Version 0.1, Esprit Project 6307 (MADE).

7. F. ArBAB, I. HERMAN and G. REYNOLDS (1993). An object model for mul-
timedia programming, Computer Graphics Forum (Eurographics’93 Confer-
ence Issue), vol. 12, pp. C101-C114.

8. F. HEEMAN, I. HERMAN and G. REYNOLDS (1994). Interaction objects in
the MADE multimedia environment. In Proceedings of the 1st Eurographics
Symposium on Multimedia, (Graz), Springer Verlag.

9. H. LIEBERMAN (1986). Using prototypical objects to implement shared
behavior in object oriented systems. In Proceedings of the First ACM Con-
ference on Object-Oriented Programming Systems, Languages, and Appli-
cations, (Portland), pp. 214-223, ACM Press.

10. F. vaN DuUK and A. SIEBES (1993). Specification of the database object,
Tech. Rep. T/DBO S1, Version 0.1, Esprit Project 6307 (MADE).

5Namely: Groupe Bull (France)y, CWI (The Netherlands), INESC (Portugal), IN-
RIA (France), FhG-IAO (Germany), BaE (UK), NR (Norway), ESI (France), Iselqui (Italy).

45

11

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

P. KAPLAN and A. BAIRD-SMITH (1993). The KEDIT protocol, Tech. Rep.
U/PAT/KED/P.0, Esprit Project 6307 (MADE).

OBJECT MANAGEMENT GROUP (1992). The Common Object Request Bro-
ker: Architecture and Specification. OMG Document Number 91.12.1, Re-
vision 1.1.

D. CARVER (1991). X wvideo extension protocol, version 2, DEC Technical
Report, MIT X11 Contributions.

T. LEVERGOOD, A. PAYNE, J. GETTYS, W. TREESE and L. STEWARD
(1993). AudioFile: A network—transparent system for distributed audio ap-
plications, Tech. Rep. CLR 93/8, Digital Equipment Corporation, Cam-
bridge Research Laboratory, Cambridge, MA.

J. Davy (1991). Go: A graphical and interactive C++ toolkit for ap-
plication data presentation and editing. In Proceedings of the 5" Annual
Technical X Conference on the X Window System.

G. BLakowskl, J. HUBEL and U. LANGREHR (1992). Tools for specify-
ing and executing synchronized multimedia presentations. In Second Inter-
national Workshop on Network and Operating System Support for Digital
Audio and Video (R. G. HERRTWICH, ed.), no. 614 in Lecture Notes in
Computer Science, (Heidelberg), pp. 271-282, Springer Verlag.

J. OUSTERHOUT (1992). An Introduction to Tcl and Tk. University of
California, Berkeley.

G. vaN Rossum (1993). Python Reference Manual. Centrum voor
Wiskunde en Informatica, Amsterdam.

INTERNATIONAL STANDARD ORGANIZATION (1992). Information Technol-
ogy — Hypermedia/Time—based Structuring Language (HyTime), ISO/IEC
10744:1992(E).

INTERNATIONAL STANDARD ORGANIZATION (1993). Information Technol-
ogy — Coded Representation of Multimedia and Hypermedia Information
Objects (MHEG), ISO/IEC CD 13522.

J. HARrRIS and I. RUBEN (1993). Bento Specification. Apple Computer.
Inc., revision 1.0d5.

A. Rizk and L. SAUTER (1992). Multicard: An open hypermedia system.
In European Conference on Hypertext ECHT’92, (Cambridge), Cambridge
University Press.

INTERNATIONAL STANDARD ORGANIZATION (1993). Presentation Environ-
ment for Multimedia Objects (PREMO), Initial Draft ISO/IEC JTC 1
SC 24 WG 6 OME 35.

46

